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FOREWORD

This is the progress report on the research project " Numerical Solutions of Three-

Dimensional Navier-Stokes Equations for Closed-Bluff Bodies". Within the guidelines

of the project, special attention was directed toward research activities in the area of

"Grid Sensitivity for Aerodynamic Optimization and Flow Analysis." The period of

performance of this specific research was January 1, 1992 through December 31, 1992.

This work was supported by the NASA Langley Research Center through Cooperate

Agreement NCC1-68. The cooperate agreement was monitored by Dr. Robert E.

Smith Jr. of Analysis and Computation Division (Computer Applications Branch),

NASA Langley Research Center, Mall Stop 125.
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GRID SENSITIVITY FOR AERODYNAMIC
OPTIMIZATION AND FLOW ANALYSIS

Ideen Sadrehaghighi
Old Dominion University, 1993

Director: Dr. Surendra N. Tiwari

An algorithm is developed to obtain the grid sensitivity with respect to

design parameters for aerodynamic optimization. Two distinct parameterization pro-

cedures are developed for investigating the grid sensitivity with respect to design pa-

rameters of a wing-section as an example. The first procedure is based on traditional

(physical) relations defining NACA four-digit wing-sections. The second is advocat-

ing a novel (geometrical) parameterization using spline functions such as NURBS

(Non-Uniform Rational B-Splines) for defining the wing-section geometry. An inter-

active algebraic grid generation technique, known as Two-Boundary Grid Generation

(TBGG) is employed to generate C-type grids around wing-sections. The grid sensi-

tivity of the domain with respect to design and grid parameters has been obtained by

direct differentiation of the grid equations. A hybrid approach is proposed for more

geometrically complex configurations. A comparison of the sensitivity coeffÉcients

with those obtained using a finite-difference approach is made to verify the feasibil-

ity of the approach. The aerodynamic sensitivity coefficients are obtained using the

compressible two-dimensional thin-layer Navier-Stokes equations. An optimization

package has been introduced into the algorithm in order to optimize the wing-section

surface using both physical and geometric parameterization. Results demonstrate a

substantially improved design, particularly in the geometric parameterization case.
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Chapter 1

INTRODUCTION

1.1 Motivation

Integrated design and optimization of airplane components has become a pri-

mary objective for most researchers in aerodynamic community. The sudden interest

can be attributed to the introduction of complex and composite materials required

by advanced aerospace vehicles, such as National AeroSpace Plane (NASP) and High

Speed Civil Transport (HSCT) aircraft where, because of extreme flight conditions,

the interdisciplinary interactions are particularly important. The process requires

many analyses over a wide range of engineering disciplines. Each analysis is based

on solving mathematical models describing physical laws associated with a discipline.

For a vehicle confined to atmospheric flight conditions, the primary engineering dis-

ciplines are: aerodynamics, structures, control, and propulsion. These disciplines are

interconnected and affect each other.

A Multidisciplinary Design Optimization (MDO) would provide the designer

with sufficient information to predict the influence of a design parameter on all rel-

evant disciplines. The traditional approach to MDO is to perform the analysis and

optimization by each discipline in a sequential manner where one discipline uses the in-

formation from the preceding analysis of another discipline. This tedious and lengthy

process, although acceptable for loosely-coupled systems, is likely to produce sub-

optimal results_ For systems which are more tightly coupled, a relatively new ap-

proach is to perform the analysis and optimization at each discipline concurrently.
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As opposed to a sequential approach, this technique supplies the designer with first

order (i.e., derivative) information, thus enables him to to predict the influence of

a design change on all the disciplines involved. The interaction among disciplines

are achieved by a system of equations known as Global Sensitivity Equations (GSE),

which communicate the system response due to design perturbations among all dis-

ciplines. On the local level, within each discipline, the Local Sensitivity Equations

(LSE) are responsible for similar response. Both GSE and LSE are linear and alge-

braic, regardless of the mathematical nature of the governing equations associated

with each discipline.

A complete design and optimization analysis using all the relevant disci-

plines is still a formidable task even for an isolated airplane component such as a

wing or fuselage. The computational cost associated with such analysis can easily

strain the capabilities of current supercomputers. The magnitude of this problem can

be best appreciated when a discrete aerodynamic or structural design analysis can

exhaust the computational capability of a medium size supercomputer. The underly-

ing problem is the expensive cost of the analysis for each discipline involved. Clearly

the aerodynamics involve non-linear physics and use of composite materials would

require non-linear structural analysis as well. For a simple aero-elastic problem, the

entire system matrix must be simultaneously solved using mostly implicit solvers.

The extensive computational demand for such coupling of the governing equations,

will likely limit MDO to only individual components such as a wing or wing-section.

The cost of optimization operations are relatively small and manageable. Two gen-

eral directions to overcome these difficulties have been proposed by different research

groups. The first direction leads toward modifying the existing computational tools in

order to obtain a relatively cheap and reliable technique for design and optimization.

The usually favored direct solvers with all their advantages, require extremely large

computer storage even for 2D applications.



t

v

2

v

v

z

Recent efforts concentrated on development and implementation of emcient

iterative techniques and improvement of existing ones. The conditioning of the co-

efficient matrix, resulting from linearization of the governing equations, are prone

to affect the convergence criteria and the propagation of error through the system.

The second direction points to the advent of next generation of supercomputers with

parallel processing capabilities. Parallel computing would be ideal for MDO analysis

where each discipline could be assigned to a particular processor for greater efficiency.

Consequently, the problem formulation and algorithm design (i.e., software develop-

ment) should change in order to adapt to new computer architecture. Recognizing this

need, the High Performance Computing and Communication Program (HPCCP) has

been established by the federal government to confront such problems. This program

is focused on developing the technology for TeraFLOP computing, an improvement

of almost 1000 times over current technology.

For the present, a more realistic task would be to consider a discrete design

and optimization model for simple configurations. The aerodynamic optimization,

being an important component of MDO, has become an area of interest for many

researchers. An essential element in design and optimization of aerodynamic surfaces

is acquiring the sensitivity of functions of CFD solutions with respect to design pa-

rameters. Several methods concerning the derivation of sensitivity equations (LSE)

are currently available. Among the most frequently mentioned are Direct Differ-

entiation (DD), Adjoint Variable (AV), Symbolic Differentiation (SD), Automatic

Differentiation (AD), and Finite Difference (FD). Each technique has its own unique

characteristics. The Direct Differentiation, adopted in this study, has the advantage of

being exact, due to direct differentiation of governing equations with respect to design

parameters. The Adjoint Variable, having its roots in structural analysis, produces

equally impressive results. For Symbolic Differentiation, a symbolic manipulator such

as MACSYMA can be used to carry out these differentiations. Automatic Differen-
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tiation, still at preliminary stages, exploits the fact that exact derivatives can be

computed easily for all elementary arithmetic operations and intrinsic functions. The

finite difference approach, simple and until recently the most popular, is based upon

finite difference approximation of the derivatives. In this approach, a design parame-

ter is perturbed from the nominal value, a new solution is obtained, and the difference

between the new and old solution is used to obtain the sensitivity derivatives. This

brute force technique has the disadvantage of being computationally intensive, espe-

cially when the number of parameters involved is large.

Design parameters can be classified according to whether or not they are cou-

pled. Uncoupled design parameters influence the solution independently and would

be the major contributors to optimization process. These parameters could be geo-

metric, flow-dependent, or grid-dependent. The geometric design parameters specify

the primary shape of a typical aerodynamic surface. Flow-dependent parameters are

usually free-stream conditions such as free-stream Mach number or angle of attack.

The grid-dependent parameters, relatively new in aerodynamic optimization, affect

the interior and boundary grids; therefore, influencing the solution and optimiza-

tion process. Traditionally, geometric parameters are considered the most affiuhnt

in aerodynamic optimization, although, optimization with respect to other design

parameters is gaining respectability. For optimization with respect to geometric de-

sign parameters, a perturbation in parameters affect the surface grid and the field

grid which, in turn, affect the flow-field solution. There are two basic components in

obtaining aerodynamic sensitivity. They are: (1) obtaining the sensitivity of the gov-

erning equations with respect to the state variables, and (2) obtaining the sensitivity

of the grid with respect to the design parameters. The sensitivity of the state vari-

ables with respect to the design parameters are described by a set of linear-algebraic

relation. These systems of equations can be solved directly by a LU decomposition

of the coefficient matrix. This direct inversion procedure becomes extremely expert-

-......a

2
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sive as the problem dimension increases. A hybrid approach of an efficient banded

matrix solver with influence of off-diagonal elements iterated can be implemented to

overcome this difficulty.

1.2 Literature Survey

The literature on sensitivity analysis and optimization is quite extensive.

The pioneering work on sensitivity analysis for MDO started with a plea from So-

bieski [1,2]' to the CFD community for extending their present capabilities to include

sensitivity analysis of aerodynamic forces. Yates [3] developed an analytical approach

using an implicit differentiation in combination with linearized lifting-surface theory

to evaluate the sensitivity coefficients. This can be used as a benchmark criteria

for assessing the accuracy of approximate methods. A semi-analytical technique, us-

ing linear unsteady aerodynamics, has been applied to an isolated wing-section and

rotating propfan blades by Murthy and Kaza [4]. Some aeroelastic analysis for a

transport wing has been inve.stigated by Grossman et al. [5], where a coupled aero-

dynamic and structure model influences the design. Livne et al. [6] and a few other

researchers focus on more complex interactions such as inclusion of active controls on

the overM1optimization process. Elbanna and Carlson [7] developed a quasi-analytical

technique for evaluating wing-section aerodynamic sensitivity coefficients in transonic

and supersonic flight regimes. Later, they extended the technique to 3D full potential

equations using the symbolic manipulator MACSYMA to obtain the sensitivity coeffi-

cients. The procedure was applied to a ONERA M6 wing planform with NACA 1406

wing-sections [8]. For non-linear aerodynamics, most of the efforts are concentrated

on involvement of CFD for both flow and sensitivity analyses. Baysal and Eleshaky

[9,10] presented an aerodynamic design strategy using direct differentiation of Euler

equations. The procedure was applied to design a scramjet-afterbody configuration

1Numbers in brackets indicate references
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for an optimized axial thrust. This scheme was later extended to include domain de-

composition capabilities in order to reduce the computational costs associated with

complex configurations [11].

Taylor et al. [12] conducted a feasibility study of sensitivity analysis in-

volving Euler equations. The method was successfully applied to two test problems,

including a subsonic nozzle and a supersonic inlet. The sensitivity derivatives are

obtained by direct differentiation of governing equations with respect to geometric

design parameters. The authors later expanded the formulation to include thin-layer

Navier-Stokese equations and a optimizer. Aerodynamic sensitivity derivatives were

obtained for an internal flow through a double-throat nozzle and an external flow

over a NACA four-digit wing-section [13]. Both geometries were optimized with new

design having a significantly improved performance. The flow and flow sensitivity

analysis module (ANSERS), developed by these authors, have been implemented in

this study. Burgreen et al. [14] improved the efficiency of an aerodynamic shape op-

timization on two fronts. The first improvement involves replacing a previously grid

point-based approach for surface parameterization with a Bezier-Bernstein polyno-

mial parameterization. The second improvement includes the use of Newton's method

instead of familiar and expensive Alternating Direction Implicit (ADI) technique to

calculate the flow solutions. Other notable schemes include variable- complexity de-

sign strategies, developed by Hutchison et al. [15,16], to combine conceptional and

preliminary-design approaches. The strategy has been used to optimize the HSCT

wing configuration. Verhoff et al. [17,18] developed a method for optimal aerody-

namic design of wing-sections using analytically computed aerodynamic sensitivities.

The scheme also utilizes Chebyshev polynomials together with parametric stretching

functions to define camber and thickness distribution of wing-section. Due to analyt-

ical parameterization of surface, the package produces an efficient optimal results.
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1.3 Objectives of Present Study
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After reviewing relevant literature, it is apparent that one aspect of aerody-

namic sensitivity analysis, namely grid sensitivity, has not been investigated exten-

sively. The grid sensitivity algorithms in most of these studies are based on struc-

tural design models. Such models, although sufficient for preliminary or conceptional

design, are not acceptable for detailed design analysis. Careless grid sensitivity eval-

uations, would introduce gradient errors within the sensitivity module, therefore, in-

fecting the overall optimization process [19]. Development of an efficient and reliable

grid sensitivity module with special emphasis on aerodynamic applications appears

essential.

Unlike aerodynamic considerations, the grid sensitivity analysis has been

used on structural design models for a number of years. In this context, grid sen-

sitivity can be thought as perturbation of structural loads, such as displacement or

natural frequency, with respect to finite element grid point locations [20]. Two basic

approaches have been cited for grid sensitivity derivatives. The first approach, known

as implicit differentiation, is based on implicit differentiation of discretlzed finite ele-

ment system. The other, which is based on the variation of continuum equations, is

known as variational or material derivative approach. The main objective here is to

develop a fast and inexpensive method for grid sensitivity to be used on an automated

aerodynamic optimization cycle.

Among two major classes of grid generation systems (Algebraic, Differen-

tial), algebraic grid generation systems are ideally suited for achieving this objective.

The explicit formulation, resulting in a fast and suitable grid, enables direct differen-

tiation of grid coordinates with respect to design parameters [21,22]. The underlying

effort here is to avoid the time consuming and costly numerical differentiation. In

L_
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addition, the analytical derivatives are exact, a desirable feature for sensitivity anal-

ysis. An important ingredient of grid sensitivity is the surface parameterization. The

most general parameterization would be to specify every grid point on the surface

as a design parameter. This, although convenient, is unacceptable due to high com-

putational cost. It is essential to keep the number of parameters as low' as possible

to avoid a surge on computational expenses. An analytical parameterization, may

alleviate that problem but it suffers from lack of generality. A compromise would be

using spline functions such as a Bezier or Non-Uniform Rational B-Spline (NURBS)

function to represent the surface [23,24]. In this manner, most aerodynamically in-

clined surfaces can be represented with few control (design) parameters.

Another important aspect of grid sensitivity, grid sensitivity with respect

to grid parameters, also deserves more attention. This concept, leading to grid opti-

mization, can be used to enhance the quality of grid in optimization cycle, resulting

in better flow analysis and faster convergence rates. The accuracy, stability, and gen-

eral reliability of most flow solvers for any problem may be strongly influenced by

the choice and quality of grid. This implies that the problem of generating a suit-

able grid is no longer only restricted to generating a valid grid, but also the related

issue of manipulating that grid to achieve certain objectives. Among those objec-

tives, grid smoothness, orthogonality, clustering, and far-field boundary location are

considered most significant. For example, grid smoothness is an important property

since an abrupt change in grid size may prompt inaccuracy, ill-conditioning, and in-

stability in the flow solution. The orthogonality factor can play an essential role in

finite-difference computations where near orthogonality of grid lines are desirable.

Also, the accuracy and efficiency of most computational schemes are enhanced by

grid clustering in regions of high gradients (e.g., boundary layer, shocks, etc.). The

far-field boundary location has been identified as a dominant factor in influencing the

solution for a fixed initial conditions. For example, previous investigations indicate
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that for a symmetrical wing-section, the error in lift coei]icient has an inverse radial

dependency on the boundary extent [33]. As required by most optimization tech-

niques, the sensitivity of the grid with respect to those parameters influencing these

objectives is required.

The organization of this study is as follows. The physical and geometric

representations of a typical model are derived in Chap. 2. The grid generation algo-

rithm and boundary grid distribution are developed in Chap. 3. Chapter 4 discusses

the theoretical formulation and aerodynamic sensitivity equation. The method of

solution is provided in Chap. 5. The results are presented and discussed in Chap. 6.

Finally, some concluding remarks are provided in Chap. 7.-
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Chapter 2

PHYSICAL MODEL
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2.1 Wing-Section Example

The physical model considered for this study is an isolated wing-section

since much research has been devoted to its development and representation. This

design is essential for the performance of an advanced aircraft for both subsonic and

supersonic speeds. Other applications could be helicopter rotor blades, and high

performance fans. Two approaches have been chosen to generate the desired wing-

sections. The first approach is a physical (i.e., analytical) representation resulting in

classical NACA four-digit wing-sections. The second approach is a geometric (i.e.,

approximative) representation of the wing-sections using NURBS.

2.1.1 Physical Representation

The NACA four-digit wing sections are examined for grid-generation param-

eterization. Families of wing sections are described by combining a mean line and a

thickness distribution. The resultant expressions possess the necessary features that

suit the problem, mainly the concise description of a wing section in terms of several

design parameters. Reference 25 provides the general equations which define a mean

line and a thickness distribution about the mean line. The design parameters are:

T -= the maximum thickness, M ---- the maximum ordinate of the mean line or cam-

ber, and C - chordwise position of maximum ordinate. The numbering system for

NACA four-digit wing-section is based on the geometry of the section. The first and

l0
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second integers represent M and C respectively, while the third and fourth integers

represent T. Symmetrical sections are designated by zeros for the first two integers,

as in the case of NACA 0012 wing-section. Figure 2.1 provides a schematic of the sec-

tion definition. The _-coordinate is mapped into the chord line x - x(r) = x(fl({))

covering both the top and bottom of the section. Details of mapping will be discussed

in the next chapter. The mean line equation is

M x2), x < C (2.1)y0(_)= _(2c_-

yo(_)= M(I- 2C+ 2C_-_)
(1 -c) 2 ' _ > c. (2.2)

The section thickness is given by

Yr(X) = A(0-2969x½ -- 0.126x -- 0.3516z _ + 0.2843x 3 -- 0.1015x4). (2.3)

The section coordinates are

(2.4)

where P_ represents the vector of independent parameters to be defined later.
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Wing-section specification for NACA four-digit series.
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2.1.2 Geometric Representation

Another approach for representing a wlng-sectlon model is using a spline

function to approximate the surface. The most commonly used approximative repre-

sentation is the Non- Uniform Rational B-Spline (NURBS) function. The NURBS pro-

vide a powerful geometric tool for representing both analytic shapes (conics, quadrics,

surfaces of revolution, etc.) and free-form surfaces [26-28]. The relation for a NURBS

curve is

--i

m_
r_

E '=0 (
X(r)x(r) = x(r) = {E'_=oN,,,(r)w, _ y(r)) D'={ Xi}Yi (2.5)

where X(r) is the vector valued surface coordinate in the r-direction, Di are the con-

trol points (forming a control polygon), w_ are weights, and N_.p(r) are the p-th degree

B-Spline basis function defined recursively as

"_.._,

1 ri _< r _< ri+l }Ni,0(r) = 0 otherwise

Ni,p(r) - r- ri Ni,p_,(r) + ri+p+x - r Ni+,,p_,(r). (2.6)
ri+p -- r i ri+p+l -- ri+l

The ri are the so-called knots forming a uniform knot vector

p+l p+l

The degree, p,where the end knots a and b are repeated with multiplicity p + 1.

number of knots, m + 1, and number of control points, n + 1, are related by

m = n + p + 1. (2.8)



w

y

For most practical applications the knot vector is normalized and the basis function

is defined on the interval (a = O, b = 1). Equation (2.5) can be rewritten as

'_ Ni'v(r)°°' (2.9)
X(r) = _ R/,p(r)Di Ri'v(r) = _=o Ni,v(r)wi i = O, .... , n

i---0

where Ri,n(r) are the Rational Basis Functions, satisfying the the following properties

among many others found in [22]

awtt

=_

E

i m

E

t

n

y_ R,,n(r) = 1 Ri,_,(r) > 0. (2.10)
i=0

Three options are available to define a wing-section using the NURBS al-

gorithm. In the first option, the camber line is defined by a NURBS curve using

three control points. The thickness distribution, Eq.(2.3), is then added and sub-

tracted to the camber. The first and last control points are fixed for the section

chord. The design parameters using this option are the location of the middle control

point, its weight, and the maximum thickness T as shown in Fig. 2.2. Figure 2.3

shows the corresponding quadratic basis function (p=2,n=2) with weights set to 1

(i.e., wi = 1, i = 0, 2). The choice of number of control points is a trade-off betwe.en

complexity and functionality [4]. Figures 2.4 and 2.5 illustrate the effect of increasing

the number of control points on camber, wing-section, and the basis function.

The second option is to define both camber and thickness distribution curves

using NURBS representation. The new wing-section can be obtained using Eq. (2.4).

Both camber and thickness distribution curves are defined using three control points.

This approach, although promises more design control, it also increases the number

of design parameters as shown in Fig. 2.6.

The third option is to bypass the camber and thickness distributions com-

pletely and control the wing-section directly with NURBS control points and weights.

Figure 2.7 illustrates a seven control point representation of a wing-section. The

points at the leading and trailing edges are fixed. Two control points at the 0% chord
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are used to affect the bluntness of the section. The movement of control points as

shown in Fig 2.8 creates the effect of camber in the wing-section. The cubic basis

function (p=3) using this approach is shown in Fig. 2.9 with weights set to 1.

w

w
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Fig. 2.2 Wing-section specification using NURBS (option 1).
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GRID GENERATION
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3.1 Introduction

In order to study the flow-field around any aerodynamic configuration, a sys-

tem of nonlinear partial differential equations must be solved over a highly complex

geometry [29]. The domain of interest should be descretized into a set of points where

an implied rule specifies the connectivity of the points. This discretization, known

as grid generation, is constrained by underlying physics, surface geometry, and the

topology of the region where the solution is desired [30-32]. A poorly constructed

grid with respect to any of the above constraints, may fail to reveal critical aspects

of the true solution.

The discretization of the field requires some organization in order for the

solution to be efficient. The logistic structure of the data such as grid spacing, the

location of outer boundaries, and the orthogonallty can influence the nature of the

solution [33,34]. Furthermore, the discretization must conform to the boundaries of

the region in such a way that boundary condition can be accurately represented.J35].

This organization can be provided by a curvilinear coordinate system where the need

for alignment with the boundary is reflected in routine choice of cartesian coordinate

system for rectangular region, cylindrical coordinate for circular region, etc. This

curvilinear coordinate system covers the field and has coordinate lines coincident

with all boundaries. To minimize the number of grid points required for a desired

accuracy, the grid spacing should be smooth, with concentration in regions of high

22
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solution gradients. These regions may be the result of geometry (large surface slopes

or corners), compressibility (entropy and shock layers), and viscosity (boundary and

shear layers). A complex flow may contain a variety of such regions of various length

scales, and often of unknown location.

Two primary categories for arbitrary coordinate generation have been iden-

tified. There are algebraic systems and partial differential systems. The algebraic sys-

tems are mainly composed of interpolative schemes such as _ransfinite Interpolation

[36], Multi-Surface Interpolation [37], and Two-Boundary Interpolation techniques

[38]. The basic mathematical structure of these methods are based on interpola-

tion of the field values from the boundary. For partial differential equation systems,

a set of partial differential equations must be solved to obtain the field values. The

differential methods may be elliptic, parabolic, or hyperbolic, depending on the bound-

ary specification of the problem. Each of these grid generation systems has its own

advantages and drawbacks depending on geometry and application of the problem.

Algebraic generating systems offer speed and simplicity while providing an explicit

control of the physical grid shape and grid spacing. However, they might produce

skewed grids for boundaries with strong curvature or slope discontinuity. Partial dif-

ferential systems, although offer relatively smooth grids for most applications, are

computer intensive, specially for three-dimensional cases. An alternative, a common

practice in recent years, has been to originate the grid using an algebraic system and

then smooth the field using a differential system. Such hybrid approach proven to be

successful and cost effective for most applications.

An array of general purpose grid generation softwares have been emerged

over past few years. Among many others, the GRAPE2D of Sorenson [39], the EA-

GLE of Thompson [40], and GRIDGEN by Stelnbrenner et al. [41], are the most

widely used. The GRAPE2D solves Poisson's equation in two-dimension and uti-

lizes a novel approach for determination of the boundary control functions. The
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EAGLE code combines techniques in surface grid generation as well as two or three-

dimensional field grid generation. The GRIDGEN series is a more recent appearance

with both algebraic and differential generation capabilities on an interactive environ-

ment. Another new arrival, called ICEM/CFD, has the capability of combining a

full Computer Aided Design system (CAD), with grid generation module [42]. This,

provides an efficient and also quick procedure to reflect the CAD model changes on

grids. Most of these packages furnish a host of options with a high degree of flexibility.

However, intelligent use of the majority of these options requires the user to be well

versed in current grid generation techniques.

Due to directness and relative simplicity of algebraic systems, the remain-

der of this chapter would be devoted to their development. The relevant aspects of

algebraic generation system such as boundary coordinate transformation, mapping,

boundary discretization, and surface grid generation are discussed in the following

sections.

3.2 Boundary-Fitted Coordinate Transformation

Structured algebraic grid generation techniques can be thought of as trans-

formation from a rectangular computational domain to an arbitrarily -shaped physical

domain as shown in Fig. 3.1 [43]. The transformation is governed by vector of control

parameters, P, and can be expressed as

= {

where

• ff, ,i, P) }
r/, P)

(3.1)

0_<__<1, O<:rl_<l, and 0_<¢_<1.

The control parameter P, is composed of parameters which control the primary shape

of the boundary (design parameters), and parameters which control the grid
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(grid parameters). A discrete subset of the vector-valued function X(_, _, _:k,P) ----

T i-_ /-1 k-i whereX { x y z }i,j,k - X* is a structured grid for _i - --L-l, t/j -- M-l, _k -- W2"_,

i=1,2,3..',L, j=l,2,3,...,Mandk=l,2,3,...,N.

The orientation of the computational coordinates relative to physical coordi-

nate, known as grid topology, is an important aspect of the transformation procedure.

In order to establish a grid topology for any geometry, it is essential to examine

each component separately [44,45]. For any given geometry, there are several pos-

sible topologies with different characteristics in terms of efficiency, coordinate cuts,

singularities, etc. For example a typical wing-section geometry, may have at least

three types of different topologies (e.g., C-, O-, or H-types) as illustrated in Fig. 3.2.

The C- and O-type topologies usually produce the most efficient grid. For present

study a C-type topology has been chosen and the mapping is shown in Fig. 3.2(a).

This topology produces no singularity and it is relatively simple to implement. For

wing-sections with sharp noses, a H-type topology would be more appropriate. For

more complex geometries, selection of different computational coordinate systems for

different regions of physical domain might be required. In this case, physical domain

is mapped into several computational sub-domains, where each sub-domain is refered

as a block. Therefore, it is possible to have a boundary-fitted coordinate system for

a highly complex configurations. For example, a typical airplane geometry has two

main components: the fuselage and the wing. A fuselage has a circular like cross-

section which suggests a natural O-type (cylindrical coordinate) grids. This topology

produces a nearly orthogonal grid with one line polar singularity at the nose. For the

streamwise direction, it is feasible to have either a C-type or a H-type grid depending

on the slope of the nose. For a fuselage with small nose slope, a H-type grid in the

streamwise direction would be more appropriate. A wing has its own natural coordi-

nates which are usually not compatible with the fuselage's coordinate system. It is

possible to generate a H-, O-, or a C-type grids in the streamwise direction, and a C-
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or a H-type in crosswise direction. To maintain a minimum of C ° continuity at the

interfaces, it is essential to select a compatible topology for the wing and fuselage.

For most cases it is conceivable to generate a single block grid about these compo-

nents, but this grid tends to be skewed for any practical purposes. A dual-block grid

possesses much less skewness than a single-block grid. It consists of two large blocks,

one covering the top portion of the physical domain, and the other covering the bot-

tom portion of the physical domain. The dual-block topology is a direct consequence

of using a H-type grid for the wing of zero wing-tip area. Figure 3.3 illustrates the

mapping of a generic airplane geometry using a dual-block topology. A C-O type grid

have been chosen for a fuselage while the wing, horizontal, and vertical tails mapped

to a H-H type grids.

Once the grid topology has been selected, then the grid on the boundary can

be generated. The boundary discretization techniques will be discussed in following

section.

L_

3.3 Boundary Discretization

Before generating the interior grid, the grid-point distribution along the

boundary edges should be computed. A discrete uniform distribution of the com-

putational coordinate can be mapped into an arbitrary distribution of the physical

coordinate, using a specified control function. The essence of mapping is that the

abscissa corresponds to the percentage of grid points and the ordinate corresponds

to a particular control function which, in turn, relates to the geometric definition of

the physical domain. The control functions must be monotonic in parametric space,

and can be computed by an analytical function or by a numerical approximation.

Analytical functions are generally limited to simple boundary curves. However, a

complex boundary can be decomposed to several sections, and analytical functions
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can be used for each section [46]. The advantage of analytical functions are their

simplicity and the guaranteed monotonicity. Exponentials are the most widely used

analytical functions and can be expressed as

where

eB'-a(_) - 1

r(_) = Yi-1 + [Yi - Y/-1] e"-* - 1 for X,-t <_ _ <_ X, (3.2)

O < X_,Y_ < I , O < _,r(_) < l and i=2, .... ,m.

The integer m represents number of control points with coordinates {Xi, Yi}. The

quantity Bi-], called the stretching parameter, is responsible for grid density. Speci-

fying B1, values of Bi_>2 are obtained by matching the slopes at control points. This,

guaranteeing a smooth grid transition between each region, can be accomplished us-

ing Newton's iterative scheme which is quadratically convergent.

The exponential function, while reasonable, is not the best choice when the

variation in grid spacing is large [35,47]. The truncation error associated with the

metric coefficients is proportional to the rate of change of grid spacing. A large vari-

ation in grid spacing, such as the one resulting from exponential function, would

increase the the truncation error, hence, attributing to the solution inaccuracies [35].

A suggested alternative to exponential function has been the usage of hyperbolic sine

function given as

where

sinh[Bi_,(_)] for X,_, < _ < Xi
sinh(Bi_a)

= Y,_, + [Y,- Y,_,] (3.3)

0<Xi, Y_<I , 0<_,v(_) <1 and i=2, .... ,rn.

The hyperbolic sine function gives a more uniform distribution in the immediate

vicinity of the boundary, resulting in less truncation error. This criteria makes the

hyperbolic sine function an excellent candidate for boundary layer type flows. A more

appropriate function for flows with both viscous and non-viscous effect would be the
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usage of a hyperbolic tangent function such as

{ tanh[-_-t(_ 1 1)]}r(_) = I_-1 + [Yi - Yi-1] 1 + tanh(___)

where

for" Xi-1 < _ < Xi

(3.4)

0<XI, Y/<I , 0<_,r(_)<l and i=2, .... ,m.

The hyperbolic tangent gives more uniform distribution on the inside as well

as on the outside of the boundary layer to capture the non-viscous effects of the so-

lution. Such overall improvement, makes the hyperbolic tangent a prime candidate

for grid point distribution in viscous flow analysis. Figure 3.4 illustrates these distri-

bution functions and the corresponding grids on a unit square.

Similarly, a numerical approximation can be used to compute the grid-polnt

distribution on a boundary curve. This approach is widely used for complex con-

figurations and care must be taken to insure monotonicity of the distribution. For

example, the natural cubic spline is C 2 continuous and offers great flexibility in grid

spacing control. However, some oscillations can be inadvertently introduced into the

control function. The problem can be avoided by using a smoothing cubic spline tech-

nique and specifying the amount of smoothing as well as control points [46]. Another

choice would be the usage of a lower order polynomial such as Monotonic Rational

Quadratic Spllne (MRQS) which is always monotonic and smooth [29]. Other advan-

tage of MRQS over cubic spline is that it is an explicit scheme and does not require

any matrix inversion.

3.4 Transfinite Interpolation

The dominant algebraic approach for grid generation is the Transfinite In-

terpolation scheme. The general methodology was first described by Gordon [36] ,

and
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there have been numerous variations applied to particular problems. The method-

ology can be presented as recursive formulas composed of univariate interpolations

[45] or as the Boolean sum of univariate interpolations [43]. Here, we follow the

Boolean sum representation; but, for brevity, we restrict the process to two dimen-

sions and omit some of the details that can be found in [43]. Also, to be consistent

with the example considered below, the parameterization is restricted to functions

and first derivatives at the boundaries (_ - 0, 1) and (r/ - 0, 1) and control in the

interpolation functions. The transformation is

X(_,rt, P ) = U_ V = U + V- UV

where

and

2 o x(6, PT)
U = _ _ a_(_, P_o) rt' (3.6)

,=, .---o Of _

2 , OmX(_, r/j, p_a)
v = _ _/_7(n, P3) . (3.7)

d---I m=0 0?] m

The term UV is the tenser product of the two univariate interpolations and can be

expressed as

2 2 t t p..CgnmX(_1,_)UV = _ _ _ _ aT((,P_o)/_y(_, uJ, P],PS) (3.8)
0_-0,7 =I=1 d=l n=0 ,,1=0

0nX(_'n'P_) and o'x(¢,nj,P_)/ d = 1, 2 m,The boundary curves and their derivatives ( on" o,1" '

n "- 0, 1) are blended into the interior of the physical domain by the interpolation

functions a_(_,P_0) and/_j(r/, P_). The boundary grid, the derivatives at the bound-

ary grid and the spacing between points are governed by the parameters {P_j PT} r.

The interpolation functions are controlled with the parameters {P_0 Pon}T. The en-

tire set of control parameters can be thought of as a vector {P_0 P_ P_ pT}T _ P.

There are numerous algebraic grid generation techniques which can be de-

duced from transfinite interpolation formulation. The most successful techniques,

however, have been those that provide adequate othogonality control and grid spacing
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control with reasonable function complexity [48]. A prime example of such technique

would be the two-boundary technique described by Smith [46], using Hermite cubic

interpolation functions in one coordinate direction between two opposing boundaries.

In the remaining coordinate direction, linear interpolation between opposing bound-

aries is specified. This is the technique employed in this study and its development

and implementation will be the subject of next section. Another notable technique is

the application of transfinite interpolation using Lagrangian interpolation functions,

where two, three, or four surfaces are specified in each direction for better grid control

[29,49]. Detailed formulation of this technique applied to generic airplane configura-

tion of Fig. 3.3a is outlined in Appendix A. The multi-surface method of Eiseman [48]

is also another popular grid generation tool. It is a very flexible univariate scheme

and is similar to Bezier and B-Spline approximation, where the parameters defining

the surface are not necessarily on the surface itself [50,51].

Z

L_

3.5 Two-Boundary Grid Generation Technique

An interactive univarlate version of Eq.(3.5) using only the normal inl_er-

polant V is developed. This, called Two-Boundary Grid Generation Technique

(TBGG), matches both the function and its first derivative at two opposing bound-

aries. An analytical approximation of the physical coordinates can be expressed as

= x_(r,P_)fl°(t,P3)+ R(r)ax_(_P_) fl_(t,P_)

+ _(_,P_)_,°(t,P_)+ s(_)o_(_,p_)_'(t, P_,) (3.9)
Ot

y = y,(r, P_)/3°(t, P_',) + n(r) Oyl(r' Pcot ')_(t,p_)

+ y2(s, P_)fl°(t, P_) + S(s) OY2(-_tP_)fl_ (t, P_) (3.10)

where

fl_(t, P_) = 2t 3 - 3t 2 + 1,
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and

/_(t,Po_)= t3-2t_+ t,

_°(t,Po_)= -2ta+ 3t2,

_'(t,Po')= t_- t

0<t<l.

Figure 3.5 presents the parametric representation of the boundaries and the

cubic connecting function of Eqs.(3.9) and (3.10). The Hermite cubic blending func-

tions are shown in Fig. 3.6.

Five functions r = fl(_), s = f2(_), R(r) = K, f3(_), S(s)= K2h(_),

t = fs(;/), and their implied defining parameters control the grid spacing on the

boundaries and the interior grid. Functions r and s define the grid spacing for lower

and upper boundaries respectively, while R(r) and S(s) specify the orthogonality

along those boundaries. The parameter t defines the grid distribution for the con-

necting curves between the two boundaries. The quantities I(1 and I(2 are parameters

that scale the magnitude of the orthogonality at the boundaries. Increasing K1 and

1(2 extends the orthogonality of the grid into the interior domain. Excessively large

values of I(1 and I(2 can also cause the grid lines to intersect themselves, which is

not a desirable phenomenon.

For a wing-section example, the domain has been decomposed into an up-

per and lower section as shown in Fig. 3.7. For the streamwise direction, a bi-

exponential distribution function with B1 = 4.5 and inflection point coordinates

{X = 0.3, Y = 0.2} has been chosen for wing-section surface. The relationship, using

Eq. (3.2) for m = 3, can be expressed as

r-

., +
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[eS'({_ ) _- 1
r_vm = rt°_" = Y + (1- Y)[ "e-_- I ] X < _ _< 1. (3.11)

The stretching parameter, B_, is obtained by matching the slopes of the two exponen-

tial functions at {X, Y}. For NACA four-digit wing-section , the section coordinate

Pi),W(r,Pi)},isacquiredbyinvokingEqs.(2.1-2.4)with

X = rupper ---- rlotoer- (3.12)

For a geometric NURBS representation, Eq. (2.9) can be used with

r = ruppe r = flower (3.13)

in conjunction with a pre-determined set of control points, D_, and corresponding

weights, wi. At the wake region, a single-exponential distribution function (m = 2)

is chosen and, again, the grid continuity is preserved with matching the slopes of the

distribution functions at the interface. Figure 3.8 shows the resultant discretization

for upper portion of the domain. For the normal direction, a single hyperbolic tangent

function such as

tanh[-_(e - 1)1
t = 1 + 0 < r/< 1 (3.14)

tanh(_)

with B3 = 3.0 is used, concentrating the grid near the wall for capturing the boundary

layer effects. The grid orthogonality at surface for this particular example is obtained

using the components of unit normal vector

Ozl(r,P_) 0vl(r,P_)

= TsinO = +cosO 0 = tan-'koz,Cr,-pT))__Ot Ot

with a constant scaling parameter, (i.e., R(r) = K_ = 2.0). For far-field boundary

{z2(s,P_),V2(s,P_)}, essentially the same distribution as surface boundary can be

adopted. The orthogonality at the far-field boundary has been ignored (S(s) = 1(2 =

0.0). Figures 3.9 and 3.10 show sample grids for NACA 0012 and NACA 8512 sections

using this procedure.
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Chapter 4

THEORETICAL FORMULATION
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4.1 Generic Sensitivity Equation

An implicit representation of a physical system can be modeled mathemat-

ically as

F(H,G(H))=O (4.1)

where G and H are dependent and independent variables, respectively. The function

F can have algebraic, differential, integral or integral- differential characteristics.

The quantities G and H can be either scalar or vector depending on the nature of the

physical model. The sensitivity of G with respect to H can be obtained by implicit

OF

differentiation of Eq. (4.1)

(4.2)

The coefficients,{_) and aF[_-_], can be obtained, provided that the solution to

Eq.(4.1) is known. Equation (4.2), now a set of algebraic equations, can be eas-

ily solved for the sensitivity derivative, {_}. If { 8_-} and OF[FS] are not available, a

finite difference approach can be adopted. The central difference approximation of

{aa--_az)can be devised as

{ } c(- + c(. - (4.3)

where AH is a small perturbation of a specified parameter. Although the implemen-

tation of the finite difference approach is comparatively easy, it has the disadvantage

4O
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of being computationally expensive. Also, the choice of AH is crucial for accuracy

of the derivative. A large values of AH may lead to inaccurate derivatives while a

small value may result in round-off errors.

L_

F i

= :

:._..

E

L

4.2 Aerodynamic Sensitivity Equation

Let Q be a solution of the Euler or Navier-Stokes equations on the domain

X and Q* be a discrete solution on the grid X where

i,j,k

!x}X= y

Z
i,j,k

(4.4)

and

1 0Q
J Ot "" R(Q). (4.5)

Here, R is the residual and J is the transformation Jacobian

0(_,7/,() (4.6)
J = O(x,y,z)"

For two-dimensional thin-layer Navier-Stokes equations, the residual R can be ex-

pressed in generalized curvilinear coordinates (_, 7?) as [52],

R = 0_' 0((_ - (_v) (4.7)

where the inviscid flux vectors _' and G are

/ }1 pUu+_,_P (_= 1 pVu+yl_P
_' = J pVv + _vP -J pYv + %P

(e + P)V (e + P)V

(4.8)

and U, V are the contravariant velocities defined as

U = Gu + _,v V = r/_u + r/_v. (4.9)
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The viscous flux vector (_v is

{ 0 }1 'I_T== + rlvr_v
(_v = j r/_r_v + 'h,r,j,,

Tl_bx + Tl_by

with shear stress, r, and heat flux, q, are written in indicial notations as

(4.10)

r,,,¢ = .R--'_ I't _Ox_ + vqxi] + X S+j (4.11)

and

( M_ _ vqa_
bx, = ujr=,::j + _RePr(7- 1)] _x_' (4.12)

where a represents the local speed of sound. The pressure is evaluated through the

ideal gas law

P = (',/- 1)[e- p(u 2 + v2)/21 (4.13)

with % the specific heat ratio taken to be 1.4. The molecular viscosity, p, is calculated

from the Sutherland's law and Stoke's hypothesis for bulk viscosity, X = 2-_p, is

invoked.

For a steady-state solution (i.e., t _ _), Eq.(4.5) is reduces to

R(Q'(P), X(P), P)=0 (4.14)

where the explicit dependency of R on grid and vector of parameters P is evident.

The parameters P control the grid X as well as the solution Q*. The fundamental

sensitivity equation containing { °o-_} and described by Taylor et al. [13] is obtained

by direct differentiation of Eq.(4.14) as

_-_ ( ov / + _ _ + _ = o. (4.15)

For a non-geometric design parameter (e.g. angle of attack or free-stream Mach

number), the grid will not be effected by changes in P.and Eq.(4.15) reduces to

+ _- = O. (4.16)
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For a geometric design parameter (e.g. camber of an airfoil), the direct dependency

r _

L_
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w
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of residual on P will vanish since the changes in P would propagate through the grid.

Equation (4.15) becomes

[0 ]/0x/t 0p j + _ b-F = 0. (4.17)

It is important to notice that Eq.(4.17) is a set of linear algebraic equations , and

the matrices oil, oRI0-xlare[o-"_] and well understood [12]. The vector quantity {°o-_}

is the solution to Eq.(4.17) given the sensitivity of the grid with respect to the

parameters,{ _ ). A direct chain rule differentiation of { _ } results in

_-F = _ tDY-j
(4.18)

whorox,, do igna o boundary oordin  o .Thovo , or{@} ropro oot , ho
boundary sensitivity which is directly related to boundary parameterization, discussed

in the next section. It has the importance of being one of the dominant factors in cal-

culating the sensitivity of surface forces needed for optimization process. The matrix

[o-'_B ] is responsible for field grid sensitivity with respect to boundary coordinates and

it is related to the rules which govern the grid generation algorithm. For algebraic

generation systems, the primary components of [0-q_8], are the interpolation functions

which distribute the interior grid.

An approximate version of Eq. (4.17) is suggested for predicting the steady-

state solution changes which occur in response to small but finite boundary changes.

i The essence of using approximate analysis is to reduce the number of expensive flow

analyses required during the optimization process. A Taylor series expansion of the

Q'(P + AP) about P is derived as

(0Q' 
Q'(P + AP) _ Q'(P) + _, 0P ] AP + ....... (4.19)

Disregarding the higher order terms and substituting for { °o-_} from Eq. (4.17), Eq.

(4.19) becomes

OR , OR (4.20)
b--_ A Q _ -_-_AP
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where

AQ ° -- Q*(P + AP) - q°(p)

It is e_sential to understand that the approximate analysis is valid as long as the

changes in the boundary shape are small (i.e., AP _ 1). Figure 4.1 exhibits the non-

linear relation between drag coefficient and thickness parameter (P = T) for class of

symmetrical wing-sections, enforcing the above argument.

4.3 Surface Parameterization

An integral part of the grid sensitivity analysis is the boundary parameter-

ization. The process is to define the major control surfaces with independent design

parameters. The most general parameterization of the boundaries would be to specify

every grid point as a parameter. This conceivably could be desirable for the bound-

aries corresponding to complex geometries to allow a design procedure to have the

greatest possible flexibility. However, it is impractical from a computational point

of view. Another approach would be a quasi-analytical parameterization in term. of

design variables. For instance, a class of wing-sections is specified by two camber-

line parameters and a thickness distribution parameter; a wing is specified by several

wing-sections; and the wing surface is interpolated from the sections. In this manner,

an airplane component can be specified by tens of parameters instead of hundreds

or thousgnds of parameters. Such physical parameterization with global boundary

control does not possess a great deal of generality necessary for high level design and

optimization analysis.

A compromise between totally geometric and physicM parameterization is to

approximate the desired boundary using a spline function such as NURBS as discussed

in Chap. 2. In the design process, using NURBS in conjunction with an interactive

Computer Aided Design (CAD) system, would be highly advantageous [24]. After
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prescribing an initial set of control points, the designer can pick and drag points while

simultaneously observe the change in the shape of the surface. Although there are

some qualifications and reservations, this approach is advocated for optimization of

aerospace-vehicle configuration designs.

w

L_
!

w
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Chapter 5

METHOD OF SOLUTION
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5.1 Introduction

As stated previously, the simplest way to obtain grid sensitivity is to vary

the control parameters, one at a time, and finite difference the results. This, however,

is proven to be computationally inefficient compared to analytical or semi-analytical

differentiation of the grid equations. Also, the proper choice of a step size is not

trivial and an improper choice might result in round-off error accumulation. The

finite difference approach should only be used as the last resort when the extreme

complexity of the grid equations dictates no other alternatives. For a less compli-

cated grid equations, a semi-analytical approach would be more appropriate. The

semi-analytical approach consists of analytical differentiation of the original function

with respect to an intermediate function, the derivative of which is then evaluated

numerically. It combines the efficiency of the analytical approach with the ease of

implementation of the finite difference approach.

The analytical approach to the grid sensitivity problem is evaluation of the

grid sensitivity coefficient by direct analytical differentiation of the grid equation. For

most cases, the grid equation is not directly differentiable, although there are schemes

that such differentiations are feasible. The algebraic grid generation schemes, such as

Two-Boundary Grid Generation (TBGG) used in this study, fall within that category.

The grids are governed by explicit algebraic relations where the direct differentiation

of the equations are not complicated. The analytical approach has the advantage of

47
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being exact,thus, avoids the round-offerrorsassociatedwith numericalapproaches.

There are two types of parameters involved in thisstudy. First,there are

the design parameters which specifythe shape of the primary boundary. For classi-

cal NACA four-digltwlng-sections,the design parameters are camber, M, location

of camber, C, and maximum thickness,T. For a geometric NURBS representation,

the design parameters are the control point coordinates,Di = {Xi,Y_}, and their

corresponding weights, w_. Secondly, there are grid parameters that define other

boundaries and the spacing between grid points. The location of far-fieldboundary,

L, grid stretchingparameter normal to the wail,Bs, grid stretchingparameter along

the wall,BI, and magnitude of normal derivativesalong bottom and top boundaries,

IQ and K2, are prime examples of such parameters. The two setsof parameters are

not functionallydependent and can be treated separately.

L

w 5.2 Grid Sensitivity with respect to Design Parameters

M

w

=

w

_q

[_._:

w

=

u

t

Here we express, the sensitivity of the grid with respect to the vector of de-

sign parameters XD. As a consequence of using algebraic grid generation technique

in which the boundary grid has the dominant effect on the interior grid, the boundary

grid sensitivity coefficient would also be essential in influencing the interior grid sen-

sitivity coefficient. Therefore, evaluation of the surface grid sensitivity coefficients,

and [ oXv f, are the most important part of the analysis and directly

dependent to the surface parameterization.

Two distinct techniques are outlined in the Chap. 2 for wing-section param-

eterization. The first technique, using the analytical relations of Eqs.(2.1-2.4), yields

the classical representation of NACA four-dlglt wing- sections. The second technique,

using an approximative (NURBS) relations of Eq.(2.9), would result in defining any

free-form surface, although, the focus here would be on a wing-section geometry. For
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practical purposes, the grid sensitivity and orthogonality at the far-field boundary

_"_ _ { __ = S(s) = 0). The evaluation of thehas beenignored, (i.e.,[ oxo j = ox_, j

grid sensitivity using analytical parameterization will be discussed first.

A direct differentiation of Eqs.(3.9) and (3.10) with respect to Xo results in

where

0x rio(t, pg ) 0x____P[)OX-o =

aX-o -

+ R(r)#_ (t, Pg) O:r_o_;[)

r
-[- R(r)#_ (f, IO'_ 0Yl(r' PI)

(5.1)

(5.2)

XD = {T,M,C} T. (5.3)

The prime indicates differentiation with respect to t and can be substituted from

Eq.(3.15). Since x_(r, P_) is independent of design parameters XD, then

Ox,(r,P_) _ 0. (5.4)
aXD

The x coordinate sensitivity, Eq.(5.1), can now be reduced to

cgx n, ,_1,, _,n, O(TsinO)

Using the relation

(5.5)

0 1 Ou
_tan-lu = (5.6)
OXo 1 + u 20XD

the z coordinate sensitivity becomes

w

cgx = :t=R(r)fl_(t,P_o)COSO 1 c9 j"0y,(r,P_) ], (5.7)
! J

OXo 1 + \ax,(r,P])]

The term _ t. 0=,,(_,Pf)J" can be evaluated by direct differentiation of Eq.(2.4). The

II coordinate sensitivity with respect to design parameters can be obtained using sim-

ilar procedure. Equation (5.2) can be modified to
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OXD

.n _091 (r, P1) -_or._al
f(t,-oj 1 0 _Oyl(r,P_) /t •

1 + \Ozl(r,P_)]

(5.8)

All terms at the right hand side of Eqs.(5.7) and (5.8) can be evaluated explicitly due

to analytical parameterization of the surface for this particular geometry.

The grid sensitivity using the NURBS parameterization is established using

Eqs.(5.1) and (5.2) where

XD = {Xi,_ii,o_i} T i = O, .... ,n.

The surface grid sensitivity coefficients, ( OXD ' 8XD j

differentiation of Eq.(2.9) with respect to XD as

(5.9)

are obtained by direct

0x,(r, Pi) 0y_(r, Pi) = P_,p(r)
OX, OY_

0x,(r,P_) 0y_(r,P_) = O.

aYi Oxi

For the weight function, we have

0X .- _ 0t:_i,p(r)
i=0 _ Di

where

(5.10)

(5.11)

(5.12)

and

-Nk_p(r)Ni,p(r)wi k ¢ i ]E]_-oN,,,(,)_,

Nk p(,) _" oN_p(rb'j-Nk p(,)Ni.p(,)_i /' _= ' ' k=i
E_--oN,,,(O_,j

k,i = O, ...,n

In the preceding equation,/_a,(r) and N_,v(r ) are the basis function of the rational

and non-rational B-splines as defined in Chap. 2.
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5.3 Grid Sensitivity with respect to Grid Parameters

The sensitivity of grid with respect to vector of grid parameters Xo has a

significant impact on grid optimization and adaption. The Xa represents, as men-

tioned earlier, the parameters that govern the surfaces other than vehicle surface and

the parameters that control the grid spacing. Among those parameters, grid stretch-

ing parameter along the wall B1 and grid stretching normal to the wall B_ are of

great importance and require more attention. The grid sensitivity with respect to B1

is obtained as

0_ 0_,(_,P_l) _ o_(_,P_)
= fl°(t,Po_) -_-B_ + R(r)fl_(t,P_) (5.13)

"_OY = _o(t ' p_) 0yl (r,P_)__ + R(r)fl_(t, pe_, 0y_(r,P_)0_B_ (5.14)

The term 8B_ can be obtained by direct differentiation of Eq.(3.11) for a bi-

exponential distribution function as

o.,(,-,P_)b___=Y [(_-_)(_'t (_'-1)_-1)_',(_-_ - 1)] 0 < _ < x (5.15)

and

Oxl(r,P_)
- (1 - y)(OB2_ [A(e B2 - 1)e B'A -eB'(e B'A - 1).]1 X _< _ < 1

OB, \_1"_ ] • (e s2 1) 2

(5.16)

where A = _ and X and Y are the inflection point coordinates for a bl-exponential

distribution function. The quantities Bz and {_} can be determined using New-

ton's iterative scheme. The term --{°y'Cr'e_) /_s, can be evaluated using the chain rule

differentiation

0y, Cr,V]) P]) '( 0x,Cr, Vl)
0B, ={0y,(_, { y_, j (517)o_,(_,p_)J

The grid sensitivity with respect to the stretching parameter normal to wall ,B3, is

Ox x,(r,P_) Oflo(t'P_) Ot
OB_ = Ot OB3

+ R(r)z[(r,p_O_,GPo) Ot
11 Ot OB3



52

v

w

w

= _

v

= z

= .

Jim2

=

_k

w

+ x2(r,P_)O_°(t'Pg) Ot
Ot OB3

+ S(8)x_(s,P_)O/_(t'P°_) at
Ot OBa

(5.18)

and

Oy D_O#°(t,Pg) Ot Dt_O#l(t,Pg) Ot

+ w(r,p_) OO°_Pg) Ot 032t(t,P_) Of0 OBa+ S(s)y_(s,P_) Ot OB3 (5.19)

where

Ofl°(t,Pg) = 6t2_6 t O/_l(t, Pg) =3t2_4 t + 1
Ot Ot

03°(t'pn) - 6t 2 +6t 03_(t, Pg) = 3t__ 1.
Ot Ot

Differentiating of Eq.(3.14) for a hyperbolic tangent stretching function yields to

Ot (r I - 1)sech2[_-_(rl - 1)]tanh(-_) - sech=(_)tanh[_(rl - 1)1

OB3 2[tanh(-_ )]'
(5.20)

Similar developments can be extended to other grid control parameters such

as the far-field boundary location, L, and the magnitude of orthogonality vector at

the boundaries, Kt and K2.

5.4 Flow Analysis and Boundary Conditions

The two-dimensional thin-layer Navier-Stokes equations are solved in their

conservation form using an upwind cell-centered finite-volume formulation. A third-

order accurate upwind biased inviscid flux balance is used in both streamwise and

normal directions. The finite-volume equivalent of second-order accurate central ;:lib

ferences is used for viscous terms. The resulting discretization represents the residual,

R(Q), at each cell depending locally on values of Q at nine neighboring cells such

that

l_,i(q ) = R+,j(Q+,j,q,,/-t, q,,/+_, q+,i-2, q+,j+2, qi-,,J, q++td, qi-2j, q,+2j).

(5.21)
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The discretized governing equations are implicitly advanced in time using

Euler implicit method which is unconditionally stable for all time steps according to

Fourier stability analysis [52]. A first-order Taylor's series expansion of the right hand

side of Eq.(4.5) results in

AQ = R"(Q) (5.22)

AQ_Q-+X-Q- n-1,2,3 ....

where 7_ represents the adiabatic surface temperature and n is the unit normal vector

of the surface. In the far-field, assuming a locally one-dimensional flow, Riemann

invariants are employed as

2a
R* = 0.25)

7-1"

state equation, Eq.(4.13). Consequently,

OT OP

u = 0, v = 0, On 0, On 0 (5.24)

where n represents the time level. The field variables for the new time level, Q,+I,

can be obtained by solving Eq.(5.22)for AQ. The coefficient matrix, [a_-_], is a sparse

square matrix with a block-banded structure of at most nine 4x4 block diagonals. An

iterative approximate factorization (AF) algorithm have been chosen to advance the

solution in time until

R(Q °) _ 0 (5.23)

where Q* are the steady-state values of the field variables. The inviscid flux vectors

are evaluated using the upwind flux vector splitting of Van Leer [53]. For an infinitely

large time steps, (i.e., At _ oo) the non-linear system of Eq.(5.22) may be directly

solved using Newton's method [14,54]. The boundary conditions are implicitly im-

plemented within the governing equations. The airfoil surface is considered to be

impermeable and adiabatic. A standard no-slip boundary condition with zero surface

velocity has been selected. The pressure at the surface is evaluated using a zeroth-

order extrapolation from the interior cells. The density is then calculated using the
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Adding and subtracting these two equations would yield to local normal

velocity and speed of sound. A periodic boundary condition is applied along the wake-

cut which resulted from a C-type grid. The effects of different boundary conditions

on the coefficient matrix [0_] are extremely important as outline in [13,54]. For

,hopo  o ,c  ondi ,onwi. dov   e.om
P q

example,

its original neat banded structure with some non-zero coefficients outside of central

bandwidth [54]. This restructuring will greatly effect the procedure for solving the

aerodynamic sensitivity equation to be discussed in the next section.

5.5 Flow Sensitivity Analysis

The flow sensitivity coefficient {°0-_} can now be directly obtained using

the fundamental sensitivity equation, Eq.(4.17), as

cgP J =- LO'-QI

oxprovided that grid sensitivity, { 0-_}, is known. The Jacobian matrix, , can be

evaluated by differentiating the discrete residuals R/j with respect to four vertices

of each cell. Since for a typical C-type grid, the stream-wise (I-dimension) of the

grid is significantly larger than normal (J-dimension), a J-ordering of the Eq.(5.26)

will be implemented. This, will substantially reduce the memory requirements due

to smaller central bandwidth of . The quantity can be obtained using

a full matrix solver to account for all the non-zero contributions outside of central

bandwidth. This, although convenient, is not practical for Navier-Stokes equations

due to large storage requirements. An alternative would be the use of a hybrid direct

solver with conventional relaxation strategy implemented in two steps. The coefficient

matrix [0g-_] can be splitted into two matrices as
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bandedofthe[m]andt"lrepre,ontsentriesoutsidewhere [M]represents the

the band. The linear system of _.(5.26) can now be solved using the Richardson's

iteration

0q*}_ 0q" l,_-'0P = +[M]-I [a_--_] {-_-}- [M]-'[NI {-0-p-- J (5.28)

k = 1, kmax

where is assumed to be zero and [M] -1 can be determined by a simple con-

ventional banded matrix solver. It is evident that matrices tM]-',[N],and [0_]

are invariant with respect to iteration index k, so they only need to be computed

once. A single conventional under-relaxiation parameter has been used to assure the

convergence of Eq. (5.28). For a typical design analysis of an airfoil, {°0-_} provides

far more information than needed [13]. In most cases, the sensitivity of aerodynamic

forces on the surface, such as lift and drag coefficients, are sought. The drag and lift

coefficients are given as

CL = Cvcosa - Cx sina. (5.29)

CD = Cvsina + Cxcosa (5.30)

where c_ is the angle of attack. The quantities Cx and Cy are the total force coeffi-

cients along z and y directions, respectively, and can be expressed as

J

Cx = _ Cp,(yi+, - Yi) + Cl,(zi+, - xi) (5.31)
i=1

J

Cr = _, Cm(xi+, - x,) + Cl,(yi +, - y,) (5.32)
i--1

where C,,i and CI_ are pressure and skin friction coefficients respectively defined as

and J represents total number of boundary cells along the airfoil surface. The terms/9/

and ri are pressure and shear stress associated with boundary cell i and the quantity

_pooU_lsl2. known as dynamic pressure of the free stream. Finally, the drag and lift
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sensitivity coefficientswith respect to Xv are obtained by differentiating Eqs.(5.21)

and (5.22) as

OCL OCv OCx

= OxDcOSc_ sinvt (5.34)OXD OXD

OCo OCv sins OCx (5.35)
= _ OXn c°s_"

_-y=-.

r_

r

v

5.6 Optimization Problem

An objective of a multidisciplinary optimization of a vehicle design is to ex-

tremize a payoff function combining dependent parameters from several disciplines.

Most optimization techniques require the sensitivity of the payoff function with re-

spect to free parameters of the system. For a fixed grid and solution conditions, the

only free parameters are the surface design parameters. Therefore, the sensitivity of

the payoff function with respect to design parameters are needed.

The optimization problem is based on the method of feasible directions

[55,56] and the generalized reduced gradient method. This method has the advantage

of progressing rapidly to a near-optimum design with only gradient information of the

objective and constrained functions required. The problem can be defined as find-

ing the vector of design parameters Xo, which will minimize the objective function

f(Xo) subjected to constraints

gj(Xo) < 0 j = 1,m (5.36)

and

x_ < xo _<x5 (5.37)

where superscripts denote the upper and lower bounds for each design parameter.

The optimization process proceeds iteratively as

x}, = x3-' + "rs" (5.38)
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where n is the iteration number, S" the vector of search direction, and 7 a scalar move

parameter. The first step is to determine a feasible search direction S", and then

perform a one-dimensional search in this direction to reduce the objective function

as much as possible, subjected to the constraints.

The present optimization strategy is based on maximizing the lift coefficient,

CL, in response to surface perturbation, subject to pre-determined design constraints.

Upper and lower bounds set for each design parameter and the sensitivity derivatives

of the objective function, 0_, and the constraint, o_, are obtained as previously

described. Throughout the analysis, the drag coefficient, Gn, is to be no greater than

the value of the initial design. The strategy, illustrated in Fig. 5.1, requires that the

grid and grid sensitivity derivatives be provided dynamically during the automated

optimization process.



58

m

L

r

v

L

r

START

.._1
'7 Surface Parametedzation J

Flow Analysis (ANSERs) I

Flow Sensitivity J

J Optimizer (ADS)I_

No Yes

I Approximate Analysis [

Yes ___

Fig. 5.1 Design optimization strategy loop.



F

Chapter 6

RESULTS AND DISCUSSION
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Three test cases are considered to demonstrate the feasibility of current pro-

cedure. For each case, the grid and flow sensitivity coefficients of the field have been

obtained. The sensitivities of the total surface forces (i.e., Lift and Drag coefficients)

are tabulated for optimization purposes. The first test case, a symmetrical NACA

0012 wing-section, has been used mainly to exhibit the accuracy of the grid sensitivity

coefficients with those obtained using the finite difference approach before proceeding

to more challenging problems. The second test case, a NACA 8512 wing-section, has

been used to extend the analysis to a more demanding problem involving three design

parameters. An optimization module has been integrated into the overall procedure

to optimize the geometry using the resultant sensitivity coefficients. Also for this

case, some aspects of grid sensitivity with respect to grid parameters are investigated

for grid optimization problem. The last case involves a generic representation of

a wlng-section using NURBS for surface definition. The improved design has been

obtained employing sensitivity coefficients of the domain with respect to previously

chosen design control points. Due to flexibility of NURBS in representing any sur-

face, the generic wing-section test case has been used to manifest the extension of

this approach to almost any desired geometry.
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6.1 Case 1: NACA 0012 Wing-Section

6.1.1 Grid Sensitivity

The previously obtained grid, as shown in Fig.3.9, is considered for grid

sensitivity analysis of this test case. The grid sensitivity with respect to the vector of

design parameters XD, are obtained using Eqs.(5.1) and (5.2) where the maximum

thickness T is the only design parameter.

Figure 6.1a shows the contour levels of the y-coordinate sensitivity with re-

spect to the thickness parameter, T. The highest contour levels are, understandably,

located in the vicinity of the chordwise location for the maximum thickness of the

wing section. For a NACA four-digit wing section, this is positioned at about 0.3

of the chord length from the leading edge [25]. The positive and negative contour

levels corresponding to the upper and lower surfaces are the direct consequence of

Eq.(2.4) and the second term on the right hand side of Eq.(5.8). The sensitivity

levels decrease when approaching the far-field boundary due to diminishing effects

of the interpolation function/_°(t, P0_). The second term on the right hand side of

Eq.(5.8) is responsible for the sensitivity effects due to orthogonality on the surface,

and it is directly proportional to the magnitude of the orthogonality vector K1. The

wake region is not sufficiently affected by any of the design parameters, and no major

sensitivity gradient should be expected there.

Figure 6.1b exhibits the contour levels of the x-coordinate sensitivity with

respect to thickness parameter, T. An interesting observation can be made here

regarding the contour levels adjacent to the surface. Unlike the y-coordinate sensi-

tivity, the x-coordlnate sensitivity is independent of design parameters at surface as

indicated by Eq.(5.4). The contour levels resulting from Eq.(5.7) are solely due to or-
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thogonality effects. There are some negative pockets of contour levels on the forward

section and some corresponding positive pockets on the rear section. The dividing

line between these pockets is located near the location of the maximum thickness (i.e.,

0.3 of the chord from the leading edge). A simple conclusion from Fig. 6.1b is that

by increasing the thickness parameter, T, points on the forward section will move to

the left, while at the same time, points at rear section will move to the right.

For comparative purposes, the grid sensitivity for this case is obtained using

the finite difference approach. The design parameters(i.e. T for this case) are per-

turbed, one at a time, and a new grid is obtained using Eqs. (3.9) and (3.10). The

sensitivity is then computed using a central difference approximation and the results

are presented in Fig. 6.2 . A side by side comparison of both results indicates good

agreement between the two approaches.

6.1.2 Flow Sensitivity

The second phase of the problem is obtaining the flow sensitivity coefficients

using the previously obtained grid sensitivity coefficients. In order to achieve this,

according to Eq.(4.17), a converged flow field solution about a fixed design po{nt

should be obtained. The computation is performed on a C-type grid composed of

141 points in the streamwise direction with 101 points on the wing-section surface,

and 31 points in the normal direction. The far-field and outer boundary were placed

about 20 chord-length away from the airfoil. It is apparent that such a coarse grid is

inadequate for capturing the full physics of the viscous flow over an airfoil. Therefore,

it should be understood that the main objective here is not to produce a highly ac-

curate flow field solution rather than to demonstrate the feasibility of the approach.

The two-dimensional, compressible, thin-layer Navier-Stokes equations are

solved for a free stream Mach number of Moo = 0.8, Reynolds number Reoo = 106,

and angle of attack cr = 0°. The solution is implicitly advanced in time using local
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time stepping as a means of promoting convergence toward the steady-state. The

residual is reduced by ten orders of magnitude as illustrated in Fig. 6.3. All compu-

tations are performed on NASA Langiey's Cray-2 mainframe with a computation cost

of 0.1209x10 -s CPU seconds/iteration/grid point. Figures 6.4 and 6.5 demonstrate

the pressure and Mach number contours of the converged solution with lift and drag

coefficients of UL = 1.53x10 -s and Up = 4.82x10 -2. Due to surface curvature, the

flow accelerates along the the upper and lower surfaces to supersonic speeds, termi-

nated by a weak shock wave behind which it becomes subsonic.

The sensitivity coefficient, {°o-_T"}, is obtained by previously described iter-

ative strategy of Eq.(5.28). The average error has been reduced by three orders of

magnitude and the convergence history is shown in Fig. 6.6. The sensitivities of the

aerodynamic forces, such as drag and lift coefficients with respect to thickness pa-

rameter T, are obtained utilizing Eqs.(5.29-5.35) with results presented in Table 6.1.

Again, for comparison , a finite difference approximation has been implemented to

validate the results. A nominal perturbation of 10 -4 for design parameter T has been

chosen and the corresponding results are included in Table 6.1. The good agreement

between the two sets of numbers verifies the accuracy of the approach. It is apparent

from Table 6.1 that while drag is extremely sensitive to the changes in wing-section

thickness, the lift is almost insensitive, due to symmetrical nature of flow for this

case.

Table 6.1 Lift and Drag sensitivities with respect to design parameter T

NACA 0012

Design Parameters

Maximum Thickness

Direct Approach Finite Difference

OXn OXr_ OXn 8Xn

-2.68x10 -6 0.709 -4.75x10 -° 0.707
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6.2 Case 2: NACA 8512 Wing-Section

6.2.1 Grid Sensitivity

The second test case considered is the NACA 8512 cambered airfoil. Again,

the previously obtained grid, as shown in Fig. 3.10, is considered for grid sensitivity

analysis. Figure 6.7 shows the coordinate sensitivity with respect to parameter T with

characteristics similar to the previous symmetrical airfoil case. Figure 6.8a represents

the y-coordinate sensitivity with respect to camber, M. It appears that the highest

sensitivity contour levels are located at the chordwise location of camber, C (i.e., 0.5

of the chord-length). The contour levels decrease toward the far-field boundary, again

as a consequence of interpolation function. However, unlike Fig. 6.7a, they possess

positive values on both upper and lower surfaces. Consequently, an increase in cam-

ber, M, shifts all the points upward. Again, minimum activity can be detected in the

wake region. Figure 6.8b shows the x-coordinate sensitivity contours with respecL to

camber, M. Here, as in Fig. 6.7b, the sensitivities are minimum on the surface of

the wing-section. There is a small gradient on the forward section, but by far the

strongest gradient is in the rearward section due to orthogonality effects.

Figure 6.9a illustrates the y-coordinate sensitivity with respect to camber

location, C. A dividing line between positive and negative contour levels appears

near the chordwise position of the camber. Like previous cases, there is no significant

activity in the wake region. The result indicates that a positive change of C will cause

the movement of points downward on the forward section, while at the same time, the

points on the rear section will respond by moving upward. Figure 6.9b illustrates the

x-coordinate sensitivity with respect to camber location C. The two major features

are attributed to chordwise location of the camber and the orthogonality effects on
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the tail section. It is interesting to notice that the sensitivity level for camber location

is considerably less than the other two design parameters.

Another important aspect of grid sensitivity analysis is to investigate the

sensitivity of a grid with respect to grid parameters. Such information would be most

helpful in grid optimization, therefore, improving the flow solution and overall opti-

mization process. Figure 6.10 illustrates the grid sensitivity with respect to stretching

parameter, B3, where the hyperbolic behavior of contour levels are apparent. The

sensitivity of grid with respect to grid distribution parameter around an airfoil, B1, is

shown in Fig. 6.11. The y-coordinate sensitivity does not register any large gradient

field except on the front. The x-coordinate, being the distribution axes, do however

show some interesting contour levels on the surface. The sensitivities with respect

to orthogonality parameter at the surface, K1, are presented on Fig. 6.12. Figure

6.13 exhibits the grid sensitivity of the domain with respect to the outer boundary

location, L. The effect of outer boundary location on the solution is a subject of

extensive research and deserves a more comprehensive investigation [33].

6.2.2 Flow Sensitivity and Optimization

Using free stream conditions of Moo = 0.7 , Reoo = 10 e, and a = 0°, a

converged flow field solution is obtained. As in the previous case, a C-type grid of

141x31 is used and the far-field boundary is placed about twenty chord-length away

from the surface. The residual is reduced by ten orders of magnitude using 3000

implicit Euler time iterations. Figures 6.14 and 6.15 illustrate the resulting pressure

and Mach number contours. As a consequence of camber, flow accelerates along the

upper surface to supersonic speeds. As the flow travels further, it encounters an ad-

verse pressure gradient due to decreasing curvature, resulting in a weak shock and

subsonic flow. Figure 6.16 shows the surface pressure coefficient Cp, where lift and

drag coefficients are CL = 0.611, and CD = 0.094.
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The surface aerodynamic sensitivity coefficients with respect to the vector of

design parameters Xv, are obtained and presented in Table 6.2. Figure 6.17 demon-

strates the convergence behavior of Eq. (5.28) for P = {T, M, C} T. It is apparent

that a combination of increasing camber and decreasing thickness would greatly im-

prove the Lift/Drag ratio for this particular problem. The effects of camber location

C is almost negligible and might be ignored in optimization process in order to de-

crease the computational costs. A comparison with finite difference approximation s

reveals the accuracy of the this direct approach. It is imperative to understand that

due to the non-linear nature of Navier-Stokes equations, the results of Table 6.2 is

only valid for current specified wing-section and flow condition. Extrapolating from

these coefficients to predict flow solutions for different families of wing-sections would

be greatly erroneous and unreliable. Such predictions are only valid as long as the

design perturbations are in the same order as the finite-difference step size used in

Table 6.2.

Table 6.3 displays similar results for the vector of grid parameters, Xa.

The far-field boundary location L has the greatest effect on lift and drag, followed

by surface grid orthogonality parameter, K1. An underlying effort in generatir_g a

suitable grid for flow analysis is to minimize the gridding effects on the solution.

Inspecting Table 6.3 reveals that the solution is apparently grid sensitive; therefore,

not particularly suitable for this geometry. This grid dependency of solution may be

mainly blamed on the coarseness of the grid and the location of far-field boundary.

Infact, according to Table 6.3, the far-field boundary should be placed further away

from wing-sectlon in order to achieve better Lift/Drag ratio. This, will undoubtedly

contribute to the coarseness of the grid, and ultimately to solution instability. In-

creasing the grid density, although may alleviate the problem, but will cause a surge

in computational costs. Another improvement may be to modify the orthogonality

vector in response to high slope regions of the surface. Also, a modest increase in
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stretching parameter might produce better results as indicated in Table 6.3. The

grid distribution on the surface appears to be sufficient due to small value of its sen-

sitivity coefficients. An ideal situation would be to alter the grid parameters until

the sensitivity coefficients of Table 6.3 all approach to zero. A combination of the

above recommendations although might produce such grid, but would be tedious and

time consuming. An alternative is to optimize each of these grid parameters using

similar optimization techniques as devised for design parameters. In this respect, an

optimum grid can be constructed for this particular example which also can be used

in design optimization cycles. Since the main objective here is to demonstrate the

validity of grid sensitivity module and its integration into the optimization loop, these

deficiencies will be overlooked for the present time.

The design optimization strategy of Fig. 5.1 is applied to three design pa-

rameters of T, M, and C. The intention is to maximize the Lift/Drag ratio subjected

to appropriate boundary perturbation. The upper and lower bounds for design pa-

rameters are assigned as

_- ÷ 028 < T _< 0.16, 0.04 < M _< 0.12, 0.3 _< C _< 0.7. (6.1)
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The computation is performed dynamically using the design optimization

module of ADS (Automated Design Synthesis) as outlined in [56]. The optimum

design is achieved after 11 non-linear optimization cycles and a total of 6800 CPU

seconds on Cray-2 mainframe. A simple break down of computational costs indicates

that about 80% of this processing time is spent on flow analyses, as is the case for most

flow solvers. Table 6.4 shows the improvement in Lift/Drag ratio for this particular

wing-section. The corresponding design parameters and their optimum values are

included in Table 6.5. As expected from sensitivity coefficients, maximum thickness

T, and maximum camber M, had the greatest effect on this optimization process.

Figure 6.18 illustrates the comparison between initial and optimized wing-section.
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Table 6.2 Lift and Drag sensitivities with respect to vector design parameter XD

NACA 8512

Design Parameters

Maximum Thickness T

Maximum Camber M

Maximum Camber location C

Direct Approach

8Xn 8Xn

-4.23 0.442

+7.84 0.322

' _8.34x10_a- .4.3xi0 -3

Finite Difference

8Xn
-4.23 0.442

+7.83 0.322

-8.5x10 -3 -4.1x10 -3

Table 6.3 Lift and Drag sensitivities with respect to vector of grid parameters Xa

= •

L$

Z Z
i

NACA 8512

Grid Parameters

Grid Stretching

Grid Distribution

Surface Orthogonality

Far-field Boundary Location

Direct Approach

8Xn
l.lxl0 -2

-2.2xi0 -3

+3.2xi0 -2

1.7x10 -1

1.5x10 -3

-8.6x10 -4

8.13x10 -3

5.43x10 -3

Finite Difference

8Xa
1.08x10 -_

-2.2x10 -s

+3.2x10 -2

1.7xi0 -l

_U 2.

1.5x10 k3

--8.58x10 -4

8.15x10 -3

5.45x10 -3
= =

= =

i

w
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Table 6.4 Comparison of initial and optimized performance variables

Performance Initial Optimum Percent

Variables Design Design Change

CL 0.611 0.746 +22

CD 0.094 0.089 --5.3

6.5Lift/Drag Ratio 8.38 +28.9

Table 6.5 Comparison of initial and optimized design parameters

=, .

Design
Parameters

Max. Thickness T

Max. Camber M

Initial

Design

0.12

0.08

Optimum

Design

0.08

0.098

Percent

Change

-33.33

+22.5

Location of Camber C 0.5 0.55 +10
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6.3 Case 3: Generic Wing-Section

6.3.1 Grid Sensitivity

The grid sensitivity with respect to design parameters using the NURBS

parameterization is discussed in this section. A generic wing-section is devised by

employing Eq.(2.9) and seven pre-specified control points and weights (option 3).

Figure 6.19 represents the wing-section and the control polygon using cubic basis

functions of Fig. 2.9. The control points are numbered counter-clockwise, starting

and ending with control points (0 and 6), assigned to the tail of the wing-section. As a

consequence of Eq.(5.9), the total number of design parameters now jumps to 21 (i.e.,

three design parameters/control point). Depending on desired accuracy and degree of

freedom for optimization, the number of design parameters could be reduced for each

particular problem. For the present case, such reduction is achieved by considering

fixed weights and chord-length. Out of the remaining four control points with two

degrees of freedom for each, control points 1 and 5 would probably have the greatest

impact due to their camber-llke positions. The number of design parameters now

reduced to four with XD = {Xt, Y1, Xs, Ys} r with initial values specified in Fig. 6.19.

In accordance with Eq.(5.10), the non-zero contribution to the surface grid sensitivity

coefficients of these control points, are the basis functions RI,s(r) and Rs,3(r), shown

in Fig. 6.20. Figure 6.21 illustrates the field-grid sensitivity with respect to design

parameter :II1. It is interesting to notice the similarities between contour patterns

of Fig. 6.21a and 6.8a with one obvious difference. The sensitivity gradients are

restricted only to the region influenced by the elected control point. This locality fea-

ture of the NURBS parameterization makes it a desirable tool for complex design and

optimization when sometimes only a local perturbation of the geometry is warranted.
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Figure 6.22 represents similar results for design control point 5 where the sensitivity

gradients are restricted to the lower portion of domain.

6.3.2 Flow Sensitivity and Optimization

The previous free-stream conditions of case 2 has been used to advance the

solution in time. The far-field boundary is again placed at 20 chord-length away with

specified boundary conditions outlined in section 5.4. The previously defined C-type

grid of 141x31 grid points is used and the residual is reduced by ten orders of magni-

tude. Flow characteristics similar to case 2 are detected with lift and drag coefficients

of CL = 0.402 and CD = 0.063. The lift and drag sensitivities with respect to Xo

are presented in Table 6.6. The finite -difference comparison of sensitivity coefficients

has been avoided due to already verified sensitivity module. An inspection of Table

6.6 indicates the substantial influence of parameters Y1 and Y5 on the aerodynamic

forces acting on the surface. The upper and lower bounds for these design parameters

are assigned as

0.2 < )(i _< 0.7, -0.I _< Y_ _< 0.5, 0.2 _< )(5 _< 0.7, -0.I _< Y5 _< 0.2. (.6.2)

The optimum design is achieved after 17 optimization cycles and total of

8807 Cray-2 CPU seconds. Comparing with case 2, an almost 30% CPU increase can

be attributed to the addition of extra design parameter. These computational cost

overruns make minimizing the number of design parameters in CFD optimization

essential. Table 6.7 highlights the initial and final values of lift and drag coefficients

with a 208% improvement in their ratio. TaMe 6.8 represents the initial and optimum

design parameters with parameters YI and Y5 having the largest change as expected.

The history of design parameters deformation during the optimization cycles appears

in Fig. 6.23, where the oscillatory nature of design perturbations during the early

cycles are clearly visible. Figure 6.24 compares the initial and optimum geometry of

the wing-section.
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Several observations should be made at thispoint. First,although control

points 1 and 5 demonstrated to have substantialinfluenceon the design of the wing-

section,they are not the only controlpointsaffectingthe design.Infact,controlpoints

2 and 4 near the nose might have greateraffectdue to sensitivenature of liftand drag

forceson thisregion. The choiceof controlpoints I and 5 here was largelybased on

theircamber likebehavior. A complete designand optimization should includeallthe

relevantcontrolpoints (e.g.,controlpoints i, 2,4, and 5). For geometries with large

number ofcontrolpoints,inorder to contain the computational costswithin a reason-

able range, a criteria for selecting the most influential control points for optimization

purposes should be implemented. This decision could be based on the already known

sensitivity coefficients, where control points having the largest coefficients could be

chosen as design parameters. Secondly, the optimum wing-section of Fig. 6.24 is only

valid for this particular example and design range. As a direct consequence of the

non-linear nature of governing equations and their sensitivity coefficients, the validity

of this optimum design would be restricted to a very small range of the original design

parameters. The best estimate for this range would be the finite-difference step size

used to validate the sensitivity coefficients (i.e., 10 -3 or less). All the wing-sections

with the original control points within this range should conform to the optimum

design of the Fig. 6.24, while keeping the grid and flow conditions fixed.

i
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Table 6.6 Lift and Drag sensitivities with respect to vector of grid parameters XD

Generic Wing-Section

Design Parameters:

X:

Direct Approach
UU [Z

-3.63x10 -2

Y1 -5.107 0.549

X5 0.15 -2.04x10 -2

Y5 2.609 0.287

L

Table 6.7 Comparison of initial and optimized performance variables

Performance

Variables

CL

Initial

Design

0.402

Optimum

Design

0.845

Percent

Change

+II0.i

CD 0.063 0.043 --31.7

Lift/Drag Ratio 6.38 19.65 +208

Table 6.8 Comparison of initial and optimized design parameters

Design Initial Optimum Percent

Parameters Design Design Change

X1 0.5 0.374 -25.2

Yl 0.2 0.134 -33

X5 0.5 0.414 -17.2

Y5 0.05 0.069 +38
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

w

2

An algorithm is developed to obtain the grid sensitivity with respect to de-

sign parameters for aerodynamic optimization. The algebraic Two-Boundary Grid

Generation (TBGG) scheme has been directly differentiated with respect to design

parameters. This formulation has the benefits of being exact, efficient, and inexpen-

sive. The methodology is applied first to a symmetrical wing-section where the grid

sensitivity coefficients have been validated by comparing well with finite difference

approach (case 1). The wing-section geometry is defined either analytically using a

combination of camber and thickness distributions, or geometrically using the NURBS

approximation of the surface. The next test case involving a cambered wing-section

is devised to couple the present grid sensitivity module with the newly developed

flow analysis and sensitivity module of Taylor et al. [13], case 2. The aerodynamic

sensitivity coefficients again compared well with finite difference results verifying the

accuracy of grid sensitivity coefficients and their flow counterparts. Another applica-

tion of this scheme, grid sensitivity with respect to grid parameters, has been obtained

for grid-optimization purposes. The algorithm is then used for the main application,

which is to optimize a generic wing-section using geometric NURBS parameterization

of the surface (case 3). A substantial increase in aerodynamic performance variables

enforces the feasibility of this approach for high level design and optimization.

It is evident that grid sensitivity plays a significant role in the aerodynamic

optimization process. The algebraic grid generation scheme presented here intended

93
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to demonstrate the elements involved in obtaining the grid sensitivity from an alge-

braic grid generation system. Each grid generation formulation requires considerable

analytical differentiation with respect to parameters which control the boundaries as

well as the interior grid. It is implied that aerodynamic surfaces, such as a wing-

section considered here, should be parameterized in terms of design parameters. Due

to the high cost of aerodynamic optimization process, it is imperative to keep the num-

ber of design parameters as low as possible. Analytical parameterization, although

facilitates this notion, has the disadvantage of being restricted to simp]e geometries.

A geometric parameterization such as NURBS, with local sensitivity, has been advo-

cated for more complex geometries.

Future investigations should include the implementation of present approach

using larger grid dimensions, adequate to resolve full physics of viscous flow analysis.

A grid optimization mechanism based on grid sensitivity coemcients with respect to

grid parameters should be included in the overall optimization process. An optimized

grid applied to present geometry, should increase the quality and convergence rate

of flow analysis within optimization cycles. Other directions could be establishing a

link between geometric design parameters (e.g., control points and weights) and b_ic

physical design parameters (e.g., camber, thickness). This would provide a consistent

model throughout the analysis which could easily be modified for optimization. Also,

the effects of including all the relevant control points on the design cycles should be

investigated. Another contribution would be the extension of the current algorithm

to three-dimensional space for complex applications. For three-dimensional appli-

cations, even a geometric parameterization of a complete aerodynamic surface can

require a large number of parameters for its definition. A hybrid approach can be

selected when certain sections or skeletal parts of a surface are specified analytically

or with NURBS and interpolation formulas are used for intermediate surfaces.
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AP PEND IX A

TRANSFINITE INTERPOLATION WITH

LAGRANGIAN BLENDING FUNCTION

A.1 Surface Grid Generation

The dual-block grid topology of Fig. 3.3 has been selected and applied to a

generic airplane configuration. The next step is to generate the solid surfaces either

by a set of analytical functions or by a set of cross-sections. The former requires

no interpolation while the latter requires some sort of bi-directional interpolation.

A powerful interpolation choice would be the use of the NURBS function for inter-

mediate surfaces. For this geometry, a fuselage with circular cross-section has been

devised using polar coordinates. The wing and tails are derived by using NA.CA

four-digit wing-sections as a selection of cross-sections and then interpolate for inter-

mediate surfaces. Figure A.1 shows the corresponding surface grid. For remaining

non-physical surfaces, the best approach is to decompose the region to a number of

sub-regions as illustrated in Fig. A.2. Although this sub-division is arbitrary, it is

a good idea to sub-divide along computational coordinates. The grid for each sub-

region, F(_,r/) = {x(_,r/),y(_,r/)} r, can be computed using a two-step Transfinite

L P

/3_(_, r/)= _ _ a_")(_)_)(r/), (A.1)
t=1 n=O

Interpolation as

M Q [ ")(_)r(_,r/) = f,(_,r/) + _2 _ _l")(r/) _I
/=1 n----O

0rl" ,_,r/t) , (A.2)
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where the/_' and/_' are the known coordinate lines on the surface with their deriva-

rives,

-_-(_t,r/)=/_'(r/), _=l,2,...,L, n=0,1,...,P,

0"ff(_,r/t)=/_'(_), l=l,2,...,M, n=0,1,...,Q,
8r/"

and c_")(_) and fl_")(r/) are the univariant blending functions,

/=l,2,...,L, n=0,1,...,P,

_= l,2,...,M, n=O, 1,...,Q.

These functions are subjected to the following conditions

(A.3)

(A.4)

(A.5)

(A.6)

These conditions permit to reproduce the input boundaries.

Selection of the blending function depends on the number of specified bound-

aries. One choice for the blending function is the Lagrangian interpolation wMch

satisfies the Cardinal conditions. For example, if some lines in the _- direction are

given at _1, _2, ..., _n, then the blending function a can be defined as,

(_ -_J) (A.9)_(_) = 1] (_t- G)"
j=l
1¢t

If only two boundaries are defined in one computational direction, then the La-

grangian interpolation would convert to a simple linear interpolation

(_2--_) (_-_1 (A.10)_'(() = (_2 ' _(_) = (_ - _,)'

This works if the boundaries do not contain sharp discontinuities. Otherwise, these

discontinuities will propagate into the interior regions. One way to solve this problem

0"a_") (_0 =St.i&,,,_, (A.7)

Or_")(rl') -- 6t,,,5,,.,,,. (A.8)
077"1
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is to construct a blending function that has very small value away from the boundaries.

For example, the following blending functions have these criteria.

e _2-¢_ - 1 e _2-_iJ - 1

= eK_ I ' -- e -- 1 (A.11)

where K is a negative number greater than one. The larger the K is the lesser the

discontinuity will propagate. A similar blending function can be constructed for the r]

direction. Some results of this formulation applied to symmetry and outer boundary

planes are shown in Figs. A.3 and A.4.

A.2 Volume Grid Generation

In general, decomposition of the physical domain produces several blocks.

Each block is usually defined by six sides, and each side can be defined by either a

surface, plane, line, or a point. If one side of a block collapses to a line or a point,

then there would be a singularity in the block. In some instances, a block may have

been defined by more or less than six surfaces. Once the surface are defined, the

interior grid can be computed by any standard grid generation technique. In this

study, an oscillatory- transfinite interpolation has been used to generate the interior

grid points.

Once the boundary surfaces (f(_, r/, ()) are known, then it is possible to

generate the interior grid by transfinite interpolations. In a general form, the transfi-

nite interpolation (or univariant interpolation) can be expressed by a vector f((, _, ()

as

L P

t=l n=0

, (A.14)
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/=1 n=0

where the A_,/_ and C_ are the known surface location and their derivatives. Figure

A.5 displays the interior grid for a constant-I surface.

L_
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Fig. A.2 Domain decomposil, ion.
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Fig. A.5 Volume glicl (consta,t-l) e,rl'ace.


